Goals¶
We have three goals:¶
1. Create a standard productivity rate formula that only takes a single unit as an input.¶
2. Optimize that formula (which scenario is more beneficial in terms of revenue in proportion to the total unit input?).¶
3. Improving Accuracty, Optimization, and Automation in Estimating¶
Demolition¶
Remove Concrete No Base No Equipment¶
Total Square Feet of Concrete Removal
$A$ = $UnitTotal$
Total Laborers To Be Used
$B$ = $Labor Personnel$ $Total$
How much concrete can 1 laborer remove in one day?
$C$ = $Laborer$ $Unit$ $Daily$ $Rate$
Total days to complete the Total Square Feet of Concrete Removal
$D$ = $Days$ $For$ $Completion$
Hours in a working day
$E$ = $Day$ $Hours$
Laborer Hourly Rate
$F = Hour$ $Rate$
Tickness of existing Concrete to be demolished
$G = Concrete$ $Tickness$
Total Export Byproduct
$H = Export$
Price per CY of Export
$I = Export$ $Unit$ $Price$
Total amount for the entire operaton
$J = Operation$ $Total$
Total amount per SF
$K = Operation$ $Total$ $Per$ $Unit$
Symbols¶
$$ D = \frac{A}{B\cdot C} $$ $$ H = \frac{A \cdot G}{27}$$ $$ J = B \cdot D \cdot E \cdot F + (H \cdot I)$$ $$ K = \frac{J}{A} $$
Words¶
$$ Days For Completion = \frac{Unit Total}{Labor Personnel Total \cdot Labor Unit Daily Rate} $$ $$ Export = \frac{Unit Total \cdot Concrete Tickness}{27}$$ $$ Operation Total = Labor Personnel Total \cdot Days For Completion \cdot Day Hours \cdot Hour Rate + (Export \cdot Export Unit Price) $$ $$ Operation Total Per Unit = \frac{Operation Total}{Unit Total} $$
Remove Concrete No Base and Equipment¶
Total Square Feet of Concrete Removal
$A$ = $UnitTotal$
Total Laborers To Be Used
$B$ = $Labor Personnel$
How much concrete can 1 Laborer remove in one day?
$C$ = $Laborer$ $Daily$ $PR$
Total days to complete the Total Square Feet of Concrete Removal
$D$ = $Days$ $For$ $Completion$
Hours in a working day
$E$ = $Day$ $Hours$
Laborer Hourly Rate
$F = Hour$ $Rate$
Tickness of existing Concrete to be demolished
$G = Concrete$ $Tickness$
Total Export Byproduct
$H = Export$
Price per CY of Export
$I = Export$ $Unit$ $Price$
Total amount for the entire operaton
$J = Operation$ $Total$
Total amount per SF
$K = Operation$ $Total$ $Per$ $Unit$
Equipment 1 Daily Price Rate
$L_1 = Equipment_{1}$ $Rental$ $Daily$ $Rate$
How much can 1 Operator have done in one day with Equipment Type 1?
$M_1$ = $Operator_1$ $Daily$ $PR$
Daily Fuel for Equipment 1
$N_1= Equipment_1$ $Fuel$
Total Equipment Type 1 Available on site
$O_1= Equipment_{1}$ $Available$
The total amount to use Equipment 1 a day
$P_1= Equipment_{1}$ $Daily$ $Total$
Symbols¶
$$ D = \frac{A}{(B\cdot C)+(M \cdot O)} $$ $$ H = \frac{A \cdot G}{27}$$ $$ P = (O_1 \cdot (L_1 + N_1)) + (O_1 \cdot E \cdot F)$$ $$ J = B \cdot D \cdot E \cdot F + (H \cdot I) + (D \cdot P)$$ $$ K = \frac{J}{A} $$
Words¶
$$ Days For Completion = \frac{Unit Total}{(Labor Personnel \cdot Laborer Daily PR)+(Operator_1 Daily PR \cdot Equipment_1 Available)} $$
$$ Export = \frac{Unit Total \cdot Concrete Tickness}{27} $$
$$ Equipment Daily Total = (Equipment_1 \cdot (Equipment_1 Rental Daily Rate + Equipment_1 Fuel)) + (Equipment_1 Available \cdot Day Hours \cdot Hour Rate) $$
$$ Operation Total = Labor Personnel \cdot Days For Completion \cdot Day Hours \cdot Hour Rate \cdot $$ $$ + $$
$$ (Export \cdot Export Unit Price) + (Days For Completion \cdot Equipment Daily Total) $$
$$ Operation Total Per Unit = \frac{Operation Total}{Unit Total}$$
Remove Concrete with Base No Equipment¶
Total Square Feet of Concrete Removal
$A$ = $UnitTotal$
Total Laborers To Be Used
$B$ = $Labor Personnel$
How much Concrete can 1 Laborer remove in one day?
$C_{Concrete}$ = $Laborer$ $Daily$ $PR$ $Concrete$
How much Base can 1 Laborer remove in one day?
$C_{Base}$ = $Laborer$ $Daily$ $PR$ $Base$
Total days to complete the Total Square Feet of Concrete Removal
$D_{Concrete}$ = $Days$ $For$ $Completion$ $Concrete$ $Removal$
Total days to complete the Total Square Feet of Base Removal
$D_{Base}$ = $Days$ $For$ $Completion$ $Base$ $Removal$
Total Days Both Concrete and Base
$E = Days$ $For$ $Completion$ $Both$
Hours in a working day
$F$ = $Day$ $Hours$
Laborer Hourly Rate
$G = Hour$ $Rate$
Tickness of Existing Concrete to be Demolished
$H_{Concrete} = Concrete$ $Tickness$
Tickness of Existing Base to be remove
$H_{Base} = Base$ $Tickness$
Total Export Concrete Byproduct
$I_{Concrete} = Export_{Concrete}$
Total Export Base Byproduct
$I_{Base} = Export_{Base}$
Price per CY of Export
$J_{Concrete} = Export_{Concrete}$ $Unit$ $Price$
Price per CY of Export
$J_{Base} = Export_{Base}$ $Unit$ $Price$
Total amount for the entire operaton
$K = Operation$ $Total$
Total amount per SF
$L = Operation$ $Total$ $Per$ $Unit$
Symbols¶
$$ D_{Concrete} = \frac{A}{B\cdot C_{Concrete}} $$ $$ D_{Base} = \frac{A}{B\cdot C_{Base}} $$ $$ E = D_{Concrete} + D_{Base}$$ $$ I_{Concrete} = \frac{A \cdot H_{Concrete} }{27}$$ $$ I_{Base} = \frac{A \cdot H_{Base} }{27}$$ $$ K = (B \cdot E \cdot F \cdot G) + (I_{Concrete} \cdot J_{Concrete}) + (I_{Base} \cdot J_{Base})$$ $$ L = \frac{K}{A} $$
Words¶
$$ Days for Completion Concrete Removal = \frac{Unit Total}{Labor Personnel \cdot Laborer Daily PR Concrete} $$
$$ Days for Completion Base Removal = \frac{Unit Total}{Labor Personnel \cdot Laborer Daily PR Base} $$
$$ Days for Completion Both = Days Completion Concrete Removal + Days Completion Base Removal $$
$$ Total Export Concrete Byproduct = \frac{Unit Total \cdot Tickness Existing Concrete}{27} $$
$$ Total Export Base Byproduct = \frac{Unit Total \cdot Tickness Existing Base}{27} $$\
$$ Operation Total = (Labor Personnel \cdot Days Completion Both \cdot Day Hours \cdot Hour Rate)$$ $$ + $$
$$ (Total Export Concrete Byproduct \cdot Price Per CY Export Concrete)$$ $$ + $$
$$ (Total Export Base Byproduct \cdot Price Per CY Export Base)$$
$$ Operation Total Per Unit = \frac{Operation Total}{Unit Total}$$
Remove Concrete with Base Equipment¶
Total Square Feet of Concrete Removal
$A$ = $UnitTotal$
Total Laborers To Be Used
$B$ = $Labor Personnel$
How much Concrete can 1 Laborer remove in one day?
$C_{Concrete}$ = $Laborer$ $Daily$ $PR$ $Concrete$
How much Base can 1 Laborer remove in one day?
$C_{Base}$ = $Laborer$ $Daily$ $PR$ $Base$
Total days to complete the Total Square Feet of Concrete Removal
$D_{Concrete}$ = $Days$ $For$ $Completion$ $Concrete$ $Removal$
Total days to complete the Total Square Feet of Base Removal
$D_{Base}$ = $Days$ $For$ $Completion$ $Base$ $Removal$
Total Days Both Concrete and Base
$E = Days$ $For$ $Completion$ $Both$
Hours in a working day
$F$ = $Day$ $Hours$
Laborer Hourly Rate
$G = Hour$ $Rate$
Tickness of Existing Concrete to be Demolished
$H_{Concrete} = Concrete$ $Tickness$
Tickness of Existing Base to be remove
$H_{Base} = Base$ $Tickness$
Total Export Concrete Byproduct
$I_{Concrete} = Export_{Concrete}$
Total Export Base Byproduct
$I_{Base} = Export_{Base}$
Price per CY of Export
$J_{Concrete} = Export_{Concrete}$ $Unit$ $Price$
Price per CY of Export
$J_{Base} = Export_{Base}$ $Unit$ $Price$
Total amount for the entire operaton
$K = Operation$ $Total$
Total amount per SF
$L = Operation$ $Total$ $Per$ $Unit$
Daily Rental Rate Price for Equipment 1 (Concrete Removal)
$ M_{Concrete} = Equipment1_{Concrete}$
Daily Rental Rate Price for Equipment 2 (Base Removal)
$ M_{Base} = Equipment2_{Base}$
Daily Fuel Price for Equipment 1 (Concrete Removal)
$ N_{Concrete} = Equipment1_{Concrete}Fuel$
Daily Fuel Price for Equipment 2 (Base Removal)
$ N_{Base} = Equipment2_{Base}Fuel$
How much Concrete can 1 Operator remove in one day?
$O_{Concrete}$ = $Operator$ $Daily$ $PR$ $Concrete$
How much Base can 1 Operator remove in one day?
$O_{Base}$ = $Operator$ $Daily$ $PR$ $Base$
Total Equipment Type 1 (Concrete) Available on Site
$P_{Concrete} = Equipment1_{Concrete} Available$
Total Equipment Type 2 (Base) Available on Site
$P_{Base} = Equipment2_{Base} Available$
The total amount to use Equipment 1 (Concrete)
$R_{Concrete} = Equipment1_{Concrete} Total$
The total amount to use Equipment 2 (Base)
$R_{Base} = Equipment2_{Base} Total$
Symbols¶
$$ D_{Concrete} = \frac{A}{(B\cdot C_{Concrete})+(O_{Concrete} \cdot P_{Concrete})} $$ $$ D_{Base} = \frac{A}{(B\cdot C_{Base})+(O_{Base} \cdot P_{Base})} $$ $$ E = D_{Concrete} + D_{Base}$$ $$ I_{Concrete} = \frac{A \cdot H_{Concrete} }{27}$$ $$ I_{Base} = \frac{A \cdot H_{Base} }{27}$$ $$ R_{Concrete} = (P_{Concrete} * (M_{Concrete} + N_{Concrete}))$$ $$ R_{Base} = (P_{Base} * (M_{Base} + N_{Base}))$$ $$ K = (B \cdot E \cdot F \cdot G) + (I_{Concrete} \cdot J_{Concrete}) + (I_{Base} \cdot J_{Base}) + R_{Concrete} + R_{Base}$$ $$ L = \frac{K}{A} $$
Words¶
$$ Days for Completion Concrete Removal = \frac{Unit Total}{(Labor Personnel \cdot Laborer Daily PR Concrete)+(Operator Daily PR Concrete \cdot Equipment1_{Concrete} Available)} $$
$$ Days for Completion Base Removal = \frac{Unit Total}{(Labor Personnel \cdot Laborer Daily PR Base)+(Operator Daily PR Base \cdot Equipment2_{Base} Available)} $$
$$ Days for Completion Both = Days Completion Concrete Removal + Days Completion Base Removal $$
$$ Total Export Concrete Byproduct = \frac{Unit Total \cdot Tickness Existing Concrete}{27} $$
$$ Total Export Base Byproduct = \frac{Unit Total \cdot Tickness Existing Base}{27} $$
$$ Equipment1_{Concrete} Total = (Equipment1_{Concrete} Available \cdot (Equipment1_{Concrete} + Equipment1_{Concrete}Fuel))$$
$$ Equipment2_{Base} Total = (Equipment2_{Base} Available \cdot (Equipment2_{Base} + Equipment2_{Base}Fuel))$$
$$ Operation Total = (Labor Personnel \cdot Days Completion Both \cdot Day Hours \cdot Hour Rate)$$ $$ + $$
$$ (Total Export Concrete Byproduct \cdot Price Per CY Export Concrete)$$ $$ + $$
$$ (Total Export Base Byproduct \cdot Price Per CY Export Base)$$ $$ + $$
$$ Equipment1_{Concrete} Total + Equipment2_{Base} Total $$
$$ Operation Total Per Unit = \frac{Operation Total}{Unit Total}$$